"Session title: Hypertrophic cardiomyopathy and VT/VF"

Imaging for Diagnosis and SCD Risk

서울대학교병원 순환기내과 이소령

Contents

- Imaging for diagnosis of HCMP
- Imaging for SCD risk assessment in patients with HCMP

European Heart Journal (2014) **35**, 2733–2779 doi:10.1093/eurheartj/ehu284

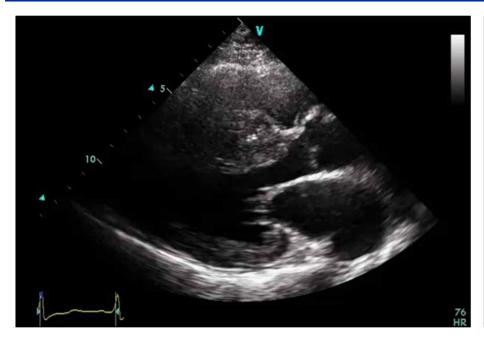
2014 ESC Guidelines on diagnosis and management of hypertrophic cardiomyopathy

The Task Force for the Diagnosis and Management of Hypertrophic Cardiomyopathy of the European Society of Cardiology (ESC)

Authors/Task Force members: Perry M. Elliott* (Chairperson) (UK) Aris Anastasakis (Greece), Michael A. Borger (Germany), Martin Borggrefe (Germany), Franco Cecchi (Italy), Philippe Charron (France), Albert Alain Hagege (France), Antoine Lafont (France), Giuseppe Limongelli (Italy), Heiko Mahrholdt (Germany), William J. McKenna (UK), Jens Mogensen (Denmark), Petros Nihoyannopoulos (UK), Stefano Nistri (Italy), Petronella G. Pieper (Netherlands), Burkert Pieske (Austria), Claudio Rapezzi (Italy), Frans H. Rutten (Netherlands), Christoph Tillmanns (Germany), Hugh Watkins (UK).

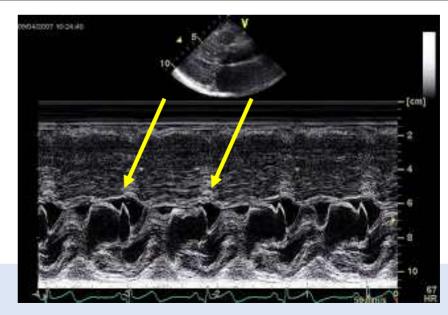
Imaging for diagnosis of HCMP

Traditional concept of HCMP


- The presence of <u>increased LV wall thickness</u> that is not solely explained by abnormal loading conditions like hypertension, aortic stenosis, and so on.
- First to diagnose HCM clinically in the 1960s by Dr. Braunwald
- m/c genetic cardiomyopathy
 - Prevalence of 1:500 from the CARDIA study
 - Typically inherited in AD, but variable penetrance, expressivity

Traditional concept of HCMP

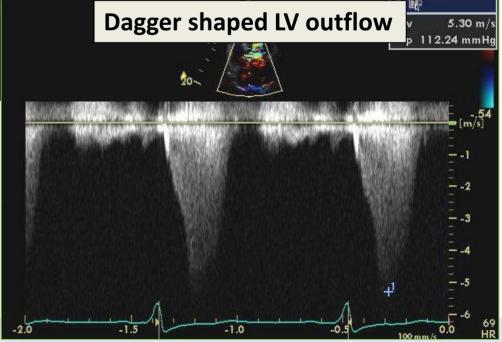
Exclusion diagnosis

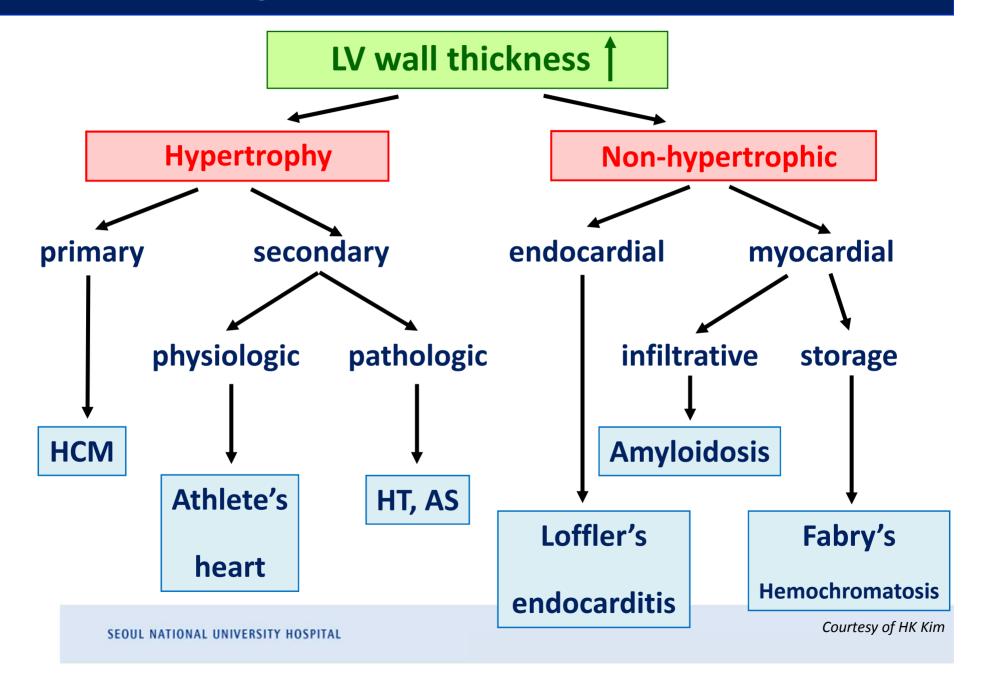

- Secondary causes of LVH should be ruled out
 - : Systemic HT, valvular/subvalvular AS, infiltrative CMP
- Morphologic diagnosis
 primarily by <u>transthoracic echocardiography</u>
 - Increased LV wall thickness ≥15mm
 - Increased LV wall thickness ≥13mm in first-degree family members of patients with unequivocal HCM

Traditional diagnosis - EchoCG

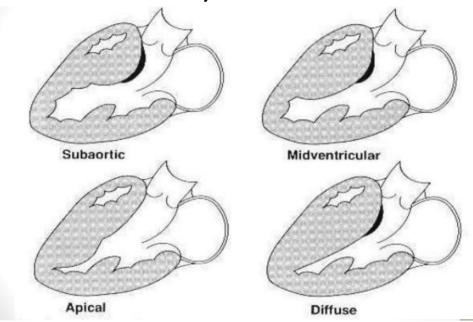
- Asymmetric Septal hypertrophy
- Thickness = 28mm
- SAM

Traditional diagnosis - EchoCG


SEOUL NATIONAL UNIVERSITY HOSPITAL


-0.5

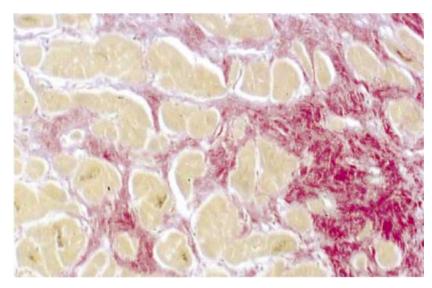
Traditional diagnosis - EchoCG



Differential diagnosis of increased LV thickness

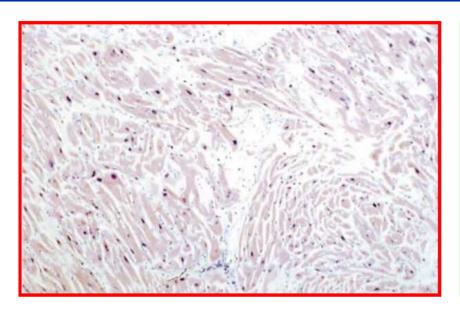
EchoCG in diagnosis of HCMP


Demonstrate severity and distribution of LVH


- Mitral valve abnormality : SAM, MR, MV abnormality
- Assessment of obstruction
- Evaluate diastolic dysfunction

Traditional concept of HCMP

- Histologic diagnosis
 - Myocardial fiber disarray with interstitial fibrosis, ECM expansion



Myocardial fiber disarray

Replacement & Interstitial fibrosis

Limitations of histologic diagnosis

- Not specific for sarcomeric disease!
 - Anderson-Fabry disease
 - Noonan syndrome
 - Friedreich ataxia

Cardiovasc Pathol. 2010;19:293-301

Br Heart J. 1992;68:586-588

J Clin Invest. 2002;109:357-362

* in trabeculations and RV insertion points in normal heart

No direct clinical surrogate for myocyte disarray

Instead, using LGE on CMR

Superior resolution

Accurate volumetric assessment

Independent of body habitus, geometry

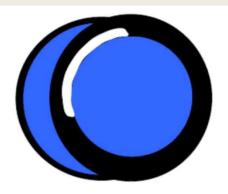
Tissue characterization

- Myocardial fibrosis

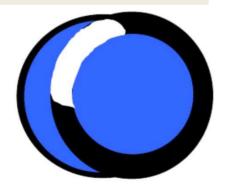
Cardiac/respiratory gating

Prolonged breath hold

Lack of portability


Higher cost

LGE in renal dysfunction


Differential diagnosis by LGE pattern

Ischemic pattern

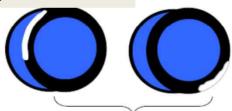
A. Subendocardial infarct

B. Transmural infarct

Non-ischemic pattern

A. Midwall LGE

- Idiopathic Dilated Cardiomyopathy
- Myocarditis

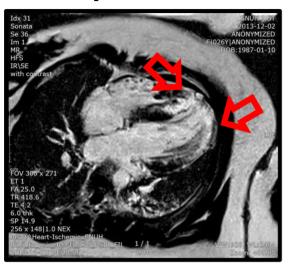


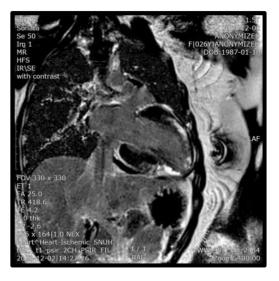
- Hypertrophic Cardiomyopathy
- Right ventricular pressure overload (e.g. congenital heart disease, pulmonary HTN)

- Sarcoidosis
- · Myocarditis
- · Anderson-Fabry's disease
- Chagas' disease

B. Epicardial LGE

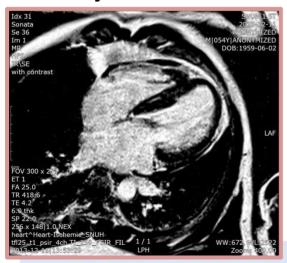
· Sarcoidosis, Myocarditis, Anderson-Fabry's disease, Chagas' disease

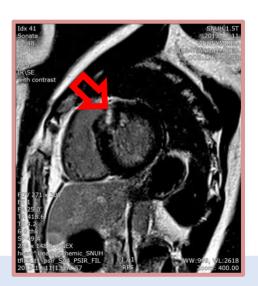

C. Global subendocardial LGE



· Amyloidosis, Systemic Sclerosis, Post cardiac transplantation

Not easy to diagnose by LGE pattern


23 year-old female



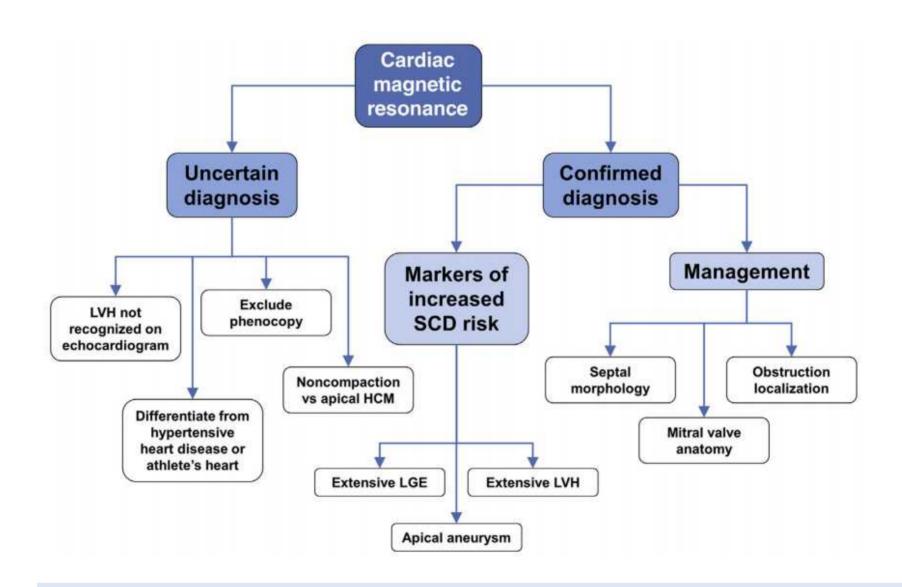
46 year-old male

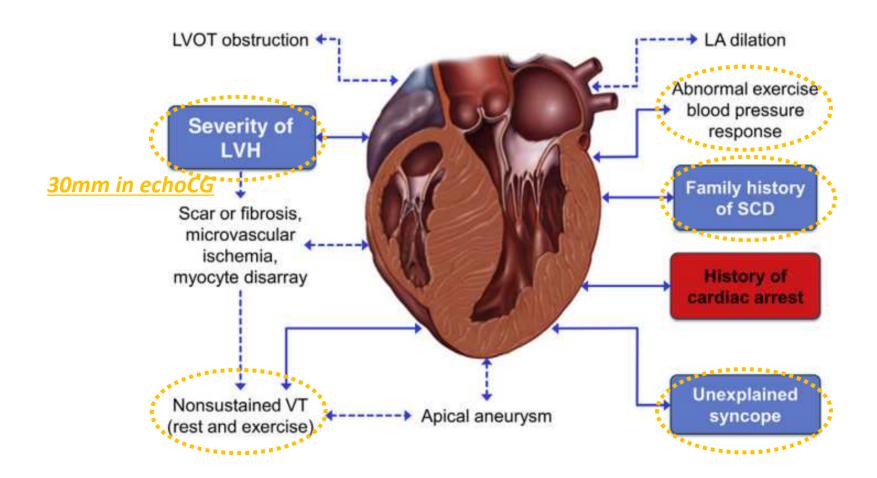
SEOUL NATIONAL UNIVERSITY HOSPITAL

Not easy to diagnose by LGE pattern

69 year-old female



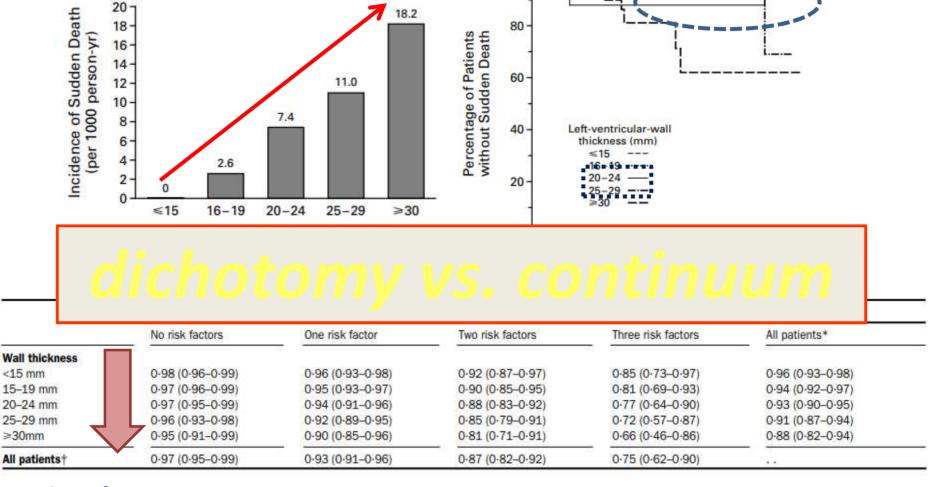

66 year-old female



Development of CMR regarding HCMP

Imaging for SCD risk assessment

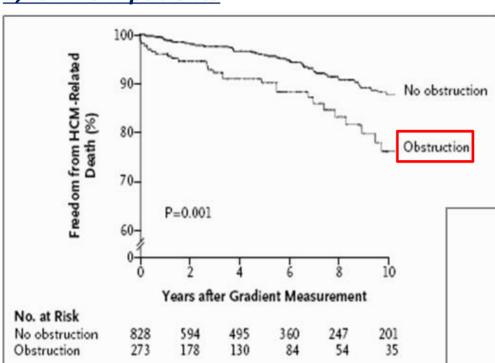
Conventional risk factors of SCD

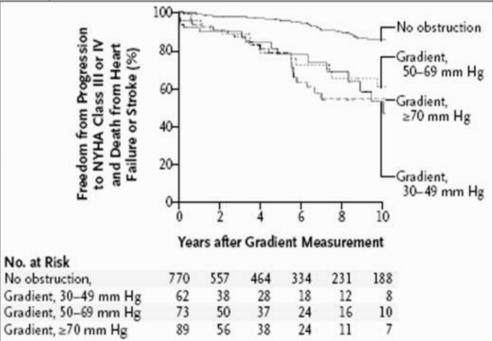


Severity of LVH for prognosis

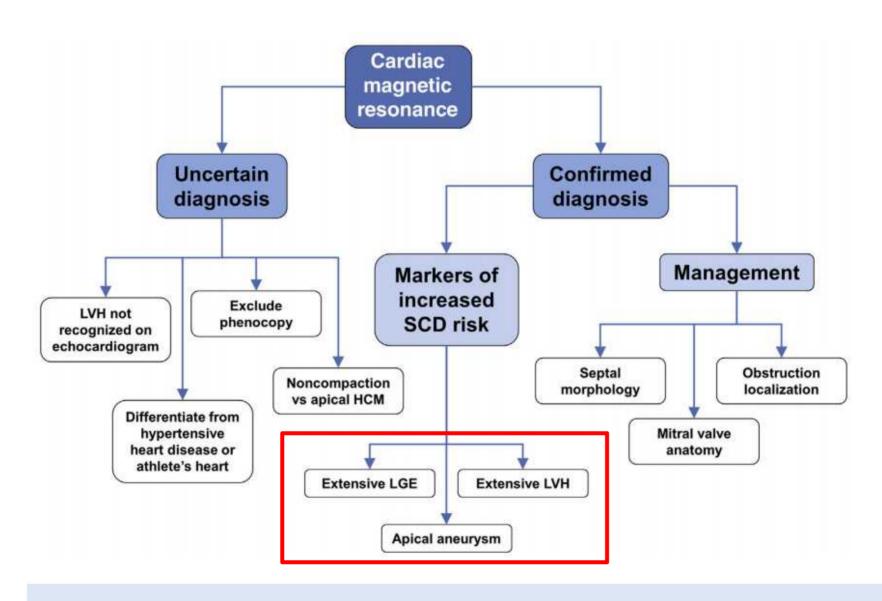
Table 7 Major clinical features associated with an increased risk of sudden cardiac death in adults

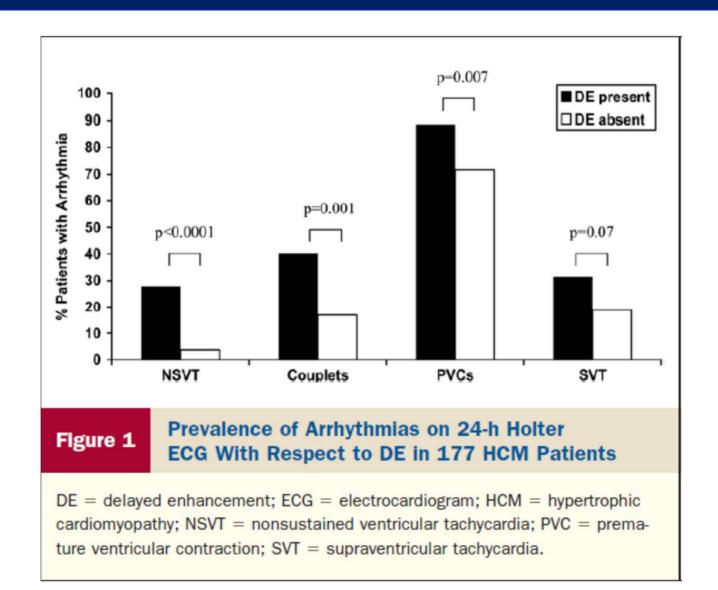
Risk Factor	Comment				
Age	 The effect of age on SCD has been examined in a number of studies^{73,82,99,208,244,373-374} and two have shown a significant association, with an increased risk of SCD in younger patients. ^{73,99} Some risk factors appear to be more important in younger patients, most notably, NSVT,⁶⁹ severe LVH³⁷⁵ and unexplained syncope.⁹⁹ 				
Non-sustained ventricular tachycardia	 NSVT (defined as ≥3 consecutive ventricular beats at ≥120 BPM lasting <30 seconds) occurs in 20–30% of patients during ambulatory ECG monitoring and is an independent predictor of SCD. (67,73,83,744,248,374 There is no evidence that the frequency, duration or rate of NSVT influences the risk of SCD. (69,376) 				
Maximum left ventricular wall thickness	 The severity and extent of LVH measured by TTE are associated with the risk of SCD.⁽⁶⁾20,121,373 Several studies have shown the greatest risk of SCD in patients with a maximum wall thickness of ≥30 mm but there are few data in patients with extreme hypertrophy (≥35 mm).^{(6,77),120,347,348,377,373} 				
Family history of sudden cardiac death at a young age	 While definitions vary,^{73,126,372,377} a family history of SCD is usually considered clinically significant when one or more first-degree relatives have died suddenly aged <40 years with or without a diagnosis of HCM, or when SCD has occurred in a first-degree relative at any age with an established diagnosis of HCM. 				
Syncope	Syncope is common in patients with HCM but is challenging to assess as it has multiple causes. Non-neurocardiogenic syncope for which there is no explanation after investigation is associated with increase risk of SCD. SCD. 73,83,93,244,246-248 Episodes within 6 months of evaluation may be more predictive of SCD.				
Left atrial diameter	 Two studies have reported a positive association between LA size and SCD.^{73,99} There are no data on the association between SCD and LA area and volume. Measurement of LA size is also important in assessing the risk of AF (see section 9.4). 				
Left ventricular outflow tract obstruction	 A number of studies have reported a significant association with LVOTO and SCD.^{72,81,83,244,372,380} Several unanswered questions remain, including the prognostic importance of provocable LVOTO and the impact of treatment (medical or invasive) on SCD. 				
Exercise blood pressure response	 Approximately one third of adult patients with HCM have an abnormal systolic blood pressure response to exercis characterised by progressive hypotension or a failure to augment the systolic blood pressure that is caused by an inappropriate drop in systemic vascular resistance and a low cardiac output reserve.^{34,381} Various definitions for abnormal blood pressure response in patients with HCM have been reported.^{68,83,146,377}; for the purposes of this guideline an abnormal blood pressure response is defined as a failure to increase systolic pressure by at least 20 mm Hg from rest to peak exercise or a fall of >20 mm Hg from peak pressure.³³⁷ Abnormal exercise blood pressure response is associated with a higher risk of SCD in patients aged ≤40 years.²³⁷ but its prognostic significance in patients >40 years of age is unknown. 				


Severity of LVH for prognosis


Number of RF RR 2.0, p<0.001 vs. **LVWTmax** RR 1.26, p=0.058

LVOT obstruction


1,101 HCM patients


Variable	Death from Any Cau			
	Relative Risk (95% CI)	PValue		
Left ventricular outflow obstruction (≥30 mm Hg)	1.6 (1.1–2.2)	0.02		
NYHA class II, III, or IV at entry	1.5 (1.1-2.1)	0.02		
Paroxysmal or chronic atrial fibrillation	1.4 (1.0-1.9)	0.04		
Maximal left ventricular thickness≥30 mm	1.6 (1.1-2.4)	0.01		

Development of CMR regarding HCMP

Relation to occurrence of frequent of arrhythmias

Relation to VT/VF and risk of sudden death

Table 4 Logistic regression analysis for clinical arrhythmias

Variable	OR	95% CI for OR	P-value
Univariate analysis			
DCE score	1.080	1.030-1.131	0.001
LVMI	1.010	1.000-1.021	0.05
Age	1.015	0.987-1.043	0.30
Male gender	1.184	0.209-1.605	0.29
DCE present	0.400	0.117-1.366	0.14
MaxLVWT	1.047	0.989-1.109	0.11
MEDT	1.118	0.977-1.278	0.10
LVEDVI	1.008	0.988-1.028	0.42
LVEF	0.968	0.929-1.008	0.12
Multivariable analysis			
DCE score	1.073	1.023-1.125	0.004
LVMI	1.006	0.996-1.016	0.22

Table 6 Logistic regression analysis for sudden cardiac death (SCD) risk (Group LR vs. Group R)

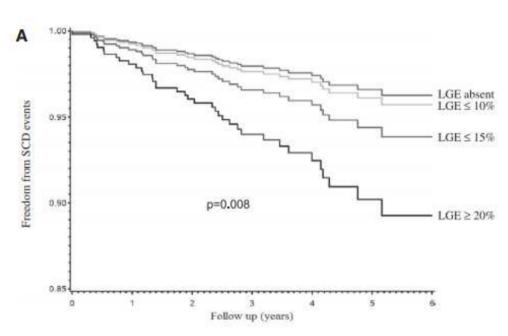
Variable	OR	95% CI for OR	P- value
Univariate analysis			
MaxLVWT	1.201	1.096-1.315	< 0.0001
LVMI	1.018	1.005-1.032	0.007
MEDT	1.349	1.128-1.615	0.001
DCE score	1.089	1.035-1.145	0.001
Age	0.991	0.967-1.016	0.50
Male gender	1.184	0.490 - 2.860	0.71
DCE present	0.400	0.117-1.366	0.14
LVEDVI	1.005	0.986-1.024	0.62
LVEF	0.980	0.942-1.019	0.30
Multivariable analysis			
MaxLVWT	1.181	1.054-1.324	0.004
DCE score	1.018	1.003-1.034	0.019
LVMI	1.001	0.979-1.024	0.916
MEDT	1.016	0.727-1.419	0.927

Clinical arrhythmia: cardiac arrest, sustained VT, and non-sustained VT

Link between LGE and SCD

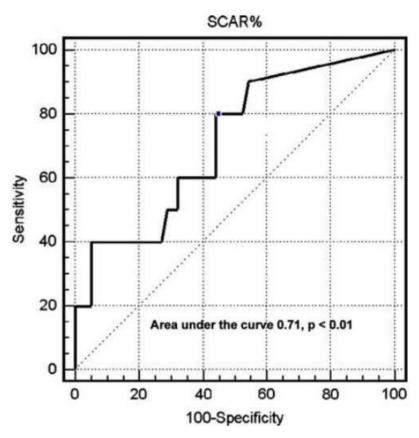
Table 1 Interventions and characteristics of individual studies

		Sample size								
Study Study design	No fibrosis	Fibrosis	Whole cohort	Mean age (years)	Extent of LGE (%)	Exclusion criteria	Primary endpoints	Secondary endpoints	Follow-up (years)	
Ismail <i>et al</i> (2014) ⁶	Prospective observational study	240	471	711	56	9.5	Prior myectomy, alcohol septal ablation, previous MI, contraindications to CMR and gadolinium-based contrast agents	SCD or aborted SCD	Composite of cardiovascular mortality, aborted SCD or cardiac transplantation and all-cause mortality	3.5
Chan <i>et al</i> (2014) ⁴	Prospective observational study	745	548	1293	46	9	Prior ICD, VT/VF, known CAD or MI, septal myectomy or alcohol ablation	SCD or aborted SCD	All-cause mortality, ICD shock, HF death, heart transplantation, progression of HF, non-cardiac death	3.3
O'Hanlon et al (2010) ⁸	Prospective observational study	81	136	217	51	15.5	Patients with known CAD or MI, septal myectomy or alcohol ablation	Composite of cardiovascular death, hospital stay, VT/VF or appropriate ICD shock	Composite of unplanned HF hospital stay, progression of HF or HF-related death Composite of sustained VT/VF, appropriate ICD discharge or SCD	3.1
Bruder et al (2010) ⁵	Prospective observational study	72	148	220	57	3.2	Known CAD, aortic stenosis, amyloidosis, hypertension, contraindications to CMR, prior septal myectomy or alcohol ablation	All-cause death and cardiac death (including SCD, HF and aborted SCD)		3
Rubinshtein et al (2010)	Retrospective analysis	185	239	424	55	6.2	Prior myectomy, alcohol septal ablation, previous MI, contraindications to CMR and gadolinium-based contrast agents	SCD or appropriate ICD therapy	-	3.6
Maron <i>et al</i> (2008) ⁷	Prospective observational study	91	111	202	42	9	Prior myectomy, alcohol septal ablation, previous MI or obstructive, contraindications to CMR and gadolinium-based contrast agents	Composite of SCD, appropriate ICD shock and progressive HF symptoms	-	1.8


CAD, coronary artery disease; CMR, cardiac MRI; HF, heart failure; ICD, implantable cardioverter defibrillator; LGE, late gadolinium enhancement; MI, myocardial infarction; SCD, sudden cardiac death; VF, ventricular fibrillation; VT, ventricular tachycardia.

	Fibro	sis	No Fibr	osis	3	Odds Ratio		Odds Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% CI	Year	M-H, Fixed, 95% CI
Maron et al	4	111	3	91	17.7%	1.10 [0.24, 5.03]	2008	-
Bruder et al	10	148	1	72	7.0%	5.14 [0.65, 41.00]	2010	+ -
O'Hanlon et al	3	136	1	81	6.8%	1.80 [0.18, 17.64]	2010	-
Rubinshtein et al	8	239	0	185	3.0%	13.62 [0.78, 237.55]	2010	
Ismail et al	18	471	4	240	28.4%	2.34 [0.78, 7.01]	2014	
Chan et al	12	548	8	745	37.0%	2.06 [0.84, 5.08]	2014	+=-
Total (95% CI)		1653		1414	100.0%	2.52 [1.44, 4.40]	1	•
Total events	55		17				_	
Heterogeneity: Chi ² =	= 3.23, df	= 5 (P	= 0.66);	$ ^2 = 0\%$				0.01 0.1 1 10 100
Test for overall effect	z = 3.2	5 (P = 0)	0.001)					0.01 0.1 1 10 100 Favours LGE Favours no LGE

OR 2.52 95% CI 1.44 to 4.4 p=0.001


Prognostic value of LGE in HCMP

Extent of LGE

1,293 HCM patients, followed up 3.3 yrs

→ 37 SCD (3%)

68 HCM patients, monitoring for 39hrs

→ 9 NSVT (13%)

Prognostic value of LGE in HCMP

Presence of LGE

Study	Odds Ratio(95% CI)	p-value
Bruder	8.00 (1.04-61.87)	0.046
O'Hanlon	5.00 (0.61-40.73)	0.133
Maron	0.54 (0.08-3.29)	0.503
Rubinshtein	10.33 (0.58-184.51)	0.112
Pooled	2.92 (1.01-8.42)	0.047

B) SCD/Aborted SCD

Study	Odds Ratio(95% CI)	p-value
Bruder	5.15 (0.65-41.00)	0.112
O'Hanlon	1.81 (0.19-17.64)	0.612
Maron	1.10 (0.24-5.03)	0.906
Rubinshtein	13.62 (0.78-237.55)	0.073
Pooled	2.39 (0.87-6.58)	0.091

C) HF Death

Study	Odds F	Ratio(95% CI)	p-value
Bruder	5.56	(0.30-101.90)	0.248
O'Hanlon	8.12	(0.45-146.04)	0.115
Rubinshtein	3.91	(0.19-81.83)	0.380
Pooled	5.68	(1.04-31.07)	0.045

D) All Cause Mortality

Study	Odds Ratio(95% CI)	p-value
Bruder	5.47 (1.24-24.08)	0.025
Rubinshtein	3.58 (0.76-16.78)	0.106
Pooled	4.46 (1.53-13.01)	0.006

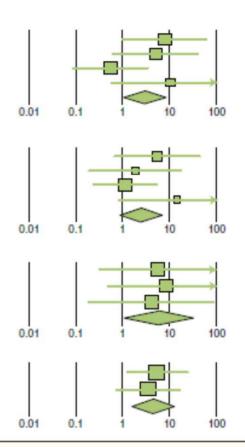
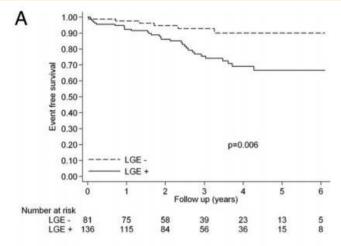


Figure 2. Forrest Plots and Pooled Odds Ratios for Clinical Endpoints

The presence of late gadolinium enhancement by cardiac magnetic resonance predicted (A) cardiac death, (C) heart failure (HF) death, and (D) all-cause mortality. Additionally, there was a trend toward significance for (B) prediction of sudden cardiac death (SCD)/aborted SCD. CI = confidence interval.


Prediction of major adverse events

	No Cardiac Mortality (n = 204)	Cardiac Mortality (n = 16)	p Value	OR (95% CI)
Age, yrs	57.0 (46.0-68.0)	61.5 (57.0-73.0)	< 0.05	1.04 (1.00-1.08)
Pattern				
Septal	84.3 (172)	81.2 (13)	0.72	0.81 (0.22-2.99)
Apical	7.4 (15)	12.5 (2)	0.36	1.80 (0.37-8.67)
Concentric	8.3 (17)	6.2 (1)	1.00	0.73 (0.09-5.90)
CMR parameter				
LVEF, %	71.0 (64.8-76.9)	68.0 (51.2-75.2)	< 0.05	0.95 (0.92-0.99)
Maximal wall thickness, mm	19.0 (16.0-22.5)	20.0 (17.5-24.5)	0.35	1.05 (0.95-1.16)
LV mass, g	154.8 (126.8-190.9)	186.0 (150.3-229.7)	0.05	1.01 (1.00-1.01)
LV mass index, g/m ²	81.4 (66.2-95.3)	97.1 (82.0-126.0)	<0.01	1.02 (1.00-1.03)
LVOT obstruction, %	30.9 (63.0)	37.5 (6.0)	0.58	1.34 (0.47-3.86)
LGE	65.2 (133.0)	93.8 (15.0)	< 0.05	8.01 (1.04-61.9)
LGE, g	1.8 (0.0-7.4)	15.6 (5.9-23.4)	< 0.001	1.02 (1.00-1.04)
LGE, % LV	1.1 (0.0-4.6)	7.4 (3.4-17.3)	< 0.001	1.05 (1.01-1.09)
Surface area LGE, mm ²	75.6 (0.0-272.3)	393.1 (185.7-849.9)	< 0.001	1.00 (1.00-1.00)
Surface area/LV mass, mm ² /g	0.5 (0.0-1.7)	2.0 (1.3-4.8)	< 0.001	1.20 (1.05-1.38)
SCD risk factors				
Maximal wall thickness >30 mm	3.4 (7.0)	6.3 (1.0)	0.46	1.88 (0.22-16.27)
History of spontaneous VT	4.9 (10.0)	12.5 (2.0)	0.21	2.77 (0.55-13.90)
Family history of SCD	4.4 (9.0)	6.3 (1.0)	0.54	1.44 (0.17-12.18)
Unexplained syncope	4.9 (10.0)	12.5 (2.0)	0.21	2.77 (0.55-13.90)
LVOT obstruction >30 mm Hg	12.2 (22.0)	13.3 (2.0)	1.00	1.10 (0.23-5.23)
Number of SCD risk factors				
0	76.5 (156.0)	68.8 (11.0)	0.54	0.68 (0.22-2.04)
1	19.6 (40.0)	18.8 (3.0)	1.00	0.95 (0.26-3.48)
2	2.9 (6.0)	6.3 (1.0)	0.38	2.20 (0.25-19.48)

220 pts, 22 pts events, FU 1090 days, LGE 67%

Prediction of major adverse events

Fibrosis and development of primary end point and annual probability of primary end point

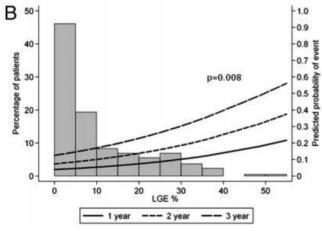


Table 3 Breakdown of Events Contributing to Overall MACE Rate in 217 HCM Patients With and Without Fibrosis

Outcome	No Fibrosis (n = 81)	Fibrosis (n = 136)	Total (n = 217)	HR	95% CI	p Value
Primary outcome	6 (7.4)	34 (25.0)	40 (18.4)	3.367	1.406-8.063	0.006
CV mortality	1 (1.2)	8 (5.9)	9 (4.2)	4.452	0.548-36.204	0.163
Unplanned CV hospital stay	5 (6.2)	24 (17.7)	29 (13.4)	2.825	1.072-7.448	0.036
VT/VF	1 (1.2)	8 (5.9)	9 (4.2)	4.973	0.622-39.762	0.131
ICD discharge	0 (0)	2 (1.5)	2 (0.9)	NA	=	_
Sudden death	1 (1.2)	1 (0.7)	2 (0.9)	0.648	0.041-10.360	0.759
HF death	0 (0)	6 (4.4)	6 (2.8)	 .	-	.—
CVA death	0 (0)	1 (0.7)	1 (0.4)	NA	_	-

CI = confidence interval; CV = cardiovascular; CVA = cardiovascular accident; HR = hazard ratio; ICD = implantable cardioverter-defibrillator; VT/VF = ventricular tachycardia/ventricular fibrillation.

LGE in HCMP

- Correlates with conventional risk factors of sudden death
- Substrate for ventricular arrhythmia
- Associated with ventricular remodeling and heart failure
- Associated with an increased risk of major adverse events
- The risk is proportional with increased amounts of LGE-detected fibrosis

Prediction of major adverse events

	No Cardiac Mortality (n = 204)	Cardiac Mortality (n = 16)	p Value	OR (95% CI)	
Age, yrs	57.0 (46.0-68.0)	61.5 (57.0-73.0)	< 0.05	1.04 (1.00-1.08)	
Pattern					
Septal	84.3 (172)	81.2 (13)	0.72	0.81 (0.22-2.99)	
Apical	7.4 (15)	12.5 (2)	0.36	1.80 (0.37-8.67)	
Concentric	8.3 (17)	6.2 (1)	1.00	0.73 (0.09-5.90)	
CMR parameter					
LVEF, %	71.0 (64.8-76.9)	68.0 (51.2-75.2)	< 0.05	0.95 (0.92-0.99)	
Maximal wall thickness, mm	19.0 (16.0-22.5)	20.0 (17.5-24.5)	0.35	1.05 (0.95-1.16)	
LV mass, g	154.8 (126.8-190.9)	186.0 (150.3-229.7)	0.05	1.01 (1.00-1.01)	
LV mass index, g/m ²	81.4 (66.2-95.3)	97.1 (82.0-126.0)	< 0.01	1.02 (1.00-1.03)	
LVOT obstruction, %	30.9 (63.0)	37.5 (6.0)	0.58	1.34 (0.47-3.86)	
LGE	65.2 (133.0)	93.8 (15.0)	< 0.05	8.01 (1.04-61.9)	
LGE, g	1.8 (0.0-7.4)	15.6 (5.9-23.4)	< 0.001	1.02 (1.00-1.04)	
LGE, % LV	1.1 (0.0-4.6)	7.4 (3.4-17.3)	< 0.001	1.05 (1.01-1.09)	
Surface area LGE, mm ²	75.6 (0.0-272.3)	393.1 (185.7-849.9)	< 0.001	1.00 (1.00-1.00)	
Surface area/LV mass, mm ² /g	0.5 (0.0-1.7)	2.0 (1.3-4.8)	< 0.001	1.20 (1.05-1.38)	
SCD risk factors					
Maximal wall thickness >30 mm	3.4 (7.0)	6.3 (1.0)	0.46	1.88 (0.22-16.27)	
History of spontaneous VT	4.9 (10.0)	12.5 (2.0)	0.21	2.77 (0.55-13.90)	
Family history of SCD	4.4 (9.0)	6.3 (1.0)	0.54	1.44 (0.17-12.18)	
Unexplained syncope	4.9 (10.0)	12.5 (2.0)	0.21	2.77 (0.55-13.90)	
LVOT obstruction >30 mm Hg	12.2 (22.0)	13.3 (2.0)	1.00	1.00 1.10 (0.23-5.23)	
Number of SCD risk factors					
0	76.5 (156.0)	68.8 (11.0)	0.54	0.68 (0.22-2.04)	
1	19.6 (40.0)	18.8 (3.0)	1.00	0.95 (0.26-3.48)	
2	2.9 (6.0)	6.3 (1.0)	0.38	2.20 (0.25-19.48)	

220 pts, 22 pts events, FU 1090 days, LGE 67%

Link between LGE and SCD

Study	Study design	Sample size					
		No fibros	s Fibrosis	Whole cohort	Mean age (years)	Extent of LGE (%)	F
Ismail <i>et al</i> (2014) ⁶	Prospective observational study	240	⁴⁷¹ 66%	711	56	9.5	1
Chan <i>et al</i> (2014) ⁴	Prospective observational study	745	⁵⁴⁸ 42%	1293	46	9	1
O'Hanlon et al (2010) ⁸	Prospective observational study	81	136 63 %	217	51	15.5	1
Bruder et al (2010) ⁵	Prospective observational study	72	148 67 %	220	57	3.2	i
Rubinshtein et al (2010)	Retrospective analysis	185	239 56 %	424	55	6.2	1
Maron <i>et al</i> (2008) ⁷	Prospective observational study	91	55%	202	42	9	1

Meta-regression analysis

We performed a meta-regression analysis, which demonstrated that the extent of LGE (%) was not significantly related to SCD/aborted-SCD risk (p=0.35), all-cause mortality (p=0.084), cardiac death (p=0.59) and HF death (p=0.99) (see online supplementary table).

Prior myectomy, alcohol septal ablation, SCD or aborted SCD Composite of cardiovascular 3.5 previous MI, contraindications to CMR and mortality, aborted SCD or cardiac gadolinium-based contrast agents transplantation and all-cause mortality Prior ICD, VT/VF, known CAD or MI, septal SCD or aborted SCD All-cause mortality, ICD shock, HF myectomy or alcohol ablation death, heart transplantation, progression of HF, non-cardiac death Patients with known CAD or MI, septal Composite of cardiovascular Composite of unplanned HF 3.1 myectomy or alcohol ablation death, hospital stay, VT/VF or hospital stay, progression of HF or appropriate ICD shock HF-related death Composite of sustained VTNF. appropriate ICD discharge or SCD Known CAD, aortic stenosis, amyloidosis, All-cause death and cardiac 3 hypertension, contraindications to CMR, death (including SCD, HF and prior septal myectomy or alcohol ablation aborted SCD) Prior myectomy, alcohol septal ablation, SCD or appropriate 3.6 previous MI, contraindications to CMR and ICD therapy gadolinium-based contrast agents Prior myectomy, alcohol septal ablation, Composite of SCD, 1.8 previous MI or obstructive. appropriate ICD shock and contraindications to CMR and progressive HF symptoms gadolinium-based contrast agents

CAD, coronary artery disease; CMR, cardiac MRI; HF, heart failure; ICD, implantable cardioverter defibrillator; LGE, late gadolinium enhancement; MI, myocardial infarction; SCD, sudden cardiac death; VF, ventricular fibrillation; VT, ventricular tachycardia,

The extent of LGE was not significantly related to the risk of SCD.

LGE in HCMP

- Correlates with conventional risk factors of sudden death
- Substrate for ventricular arrhythmia
- Associated with ventricular remodeling and heart failure
- Associated with an increased risk of major adverse events
- The risk is proportional with increased amounts of LGE-detected fibrosis
- Limitations
 - Presence of LGE: too common
 - LGE%: cut-off value, standardization, reproducibility issue
 - Not a 1:1 relationship between the presence of LGE and cardiac death
- Combination prediction model
- Conventional low risk group
- Large longitudinal follow-up multicenter studies are needed.

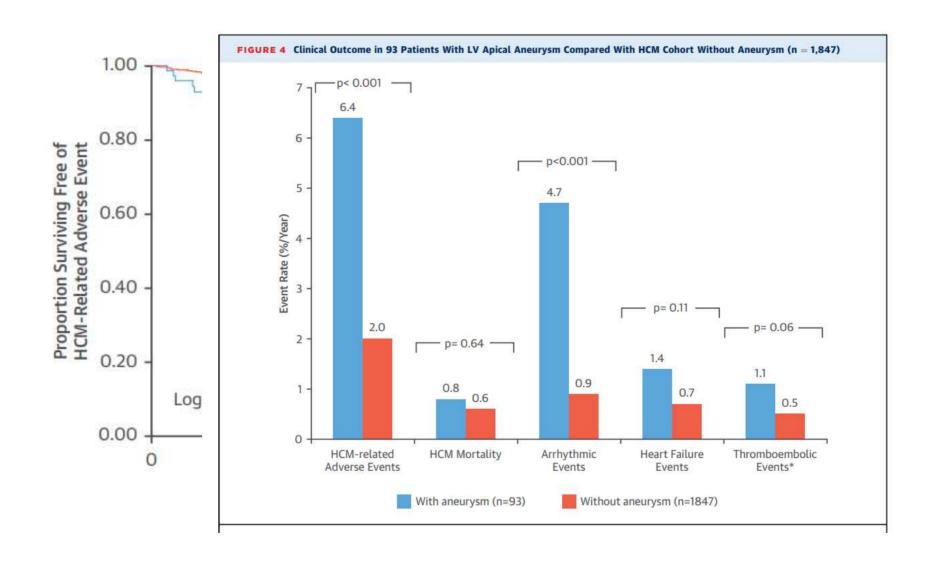
LGE in HCMP

5.5.3 Late Gadolinium Enhancement and Prognosis

The association between LGE and long-term outcomes has been examined in six studies, ^{138–143} four of which are included in a meta-analysis (Web Table 4). ¹⁴⁴ All published studies are limited by selection and referral bias, incomplete risk assessment and differences in scanning protocols and LGE quantification. The pooled data support a relationship between LGE and cardiovascular mortality, heart failure death and all-cause death, but show only a trend towards an increased risk of SCD. ¹⁴⁴ Late gadolinium enhancement is associated with NSVT on Holter monitoring. ^{140,142}

On balance, the extent of LGE on CMR has some utility in predicting cardiovascular mortality, but current data do not support the use of LGE in prediction of SCD risk.

Summaries


- Echocardiography is central to the diagnosis and monitoring of HCMP.
 - Assessment of LV wall thickness
 - Associated abnormalities of the mitral valve and LVOT
 - Left atrial enlargement, diastolic function
 - Systolic function
 - Differential diagnosis
- Cardiovascular magnetic resonance imaging of patients with known or suspected HCM should be in line with current guideline recommendation and should be performed and interpreted by teams experienced in cardiac imaging and in the evaluation of heart muscle disease
 - Assessment of ventricular morphology and function
 - Myocardial fibrosis (late gadolinium enhancement, LGE)
 - LGE and prognosis
 - Differential diagnosis

Seoul National University Hospital Cardiac Arrhythmia Laboratory

Apical aneurysm

